
CS476 Realtime Embedded Systems – Final
project

Antoine Albertelli (205323) Atri Bhattacharyya (269369)

June 12, 2017

1. Project description

For the final project in the “Realtime Embedded Systems” class, we decided to build an audio
streaming system. Our system is pretty similar in principle to what would be used in a modern-
day radio studio. It takes an analog sound input, converts it to digital values, compresses the
audio, then broadcasts over the internet.

2. Hardware design

SDRAM
controller Mailbox GPIO

Shared Avalon Bus

ADC

SPI

HPS (ARM core)

NIOS 2 Private Avalon Bus

NIOS2 / fOn Chip
RAM System ID Periodic

Timer
ADC

controller

Lightweight HPS to
FPGA bridge

64 MB
SDRAM

FPGA

Legend

Avalon
Slave

Avalon
Master

Custom
Subsystem

Figure 1: Overview of the test system.

The test system (figure 1) is organized around a common Avalon bus connecting several
subsystems:

• A NIOS2 processor reads samples from the Analog-to-Digital Converter (ADC) and write
them to the shared memory.

1

• An On-chip memory holds the code and data for the NIOS processor.

• An ADC controller handles the SPI communication with the on-board ADC, an AD7928
from Analog Device. The microphone is connected to the first input of the ADC.

• A System ID peripheral prevents downloading a version of the software not compatible
with the hardware.

• A timer provides a periodic interrupt at 44.1 kHz, to schedule the audio sampling.

• An SDRAM controller provides a shared memory to both processors, used to hold audio
samples.

• A mailbox transfers messages from the NIOS to the HPS.

• A GPIO port is connected to the onboard switches, to allow the user to change various
parameters at runtime.

3. Software design

Compressed
audioRaw audio

Microphone ADC NIOS

Mailbox

SDRAM

Laptop 1

Laptop 2

Python ices2 Icecast2
Analog SPI

HTTP

HTTP

Figure 2: Software architecture of the system

The software for our project is split in two parts. The first part of the system runs on the NIOS
processor. It manages the audio sample acquisition and storage in the shared memory. When
enough samples (1024) are collected, it notifies the Linux system through a shared mailbox. It
then switches to another buffer and starts recording again.
On the Linux side, one program is waiting for a buffer to be ready by polling the shared

mailbox. When it happens, it reads the buffer and sends it to an external program for audio
compression (IceS). IceS then sends the compressed stream to the broadcast server (IceCast)
using TCP. Multiple clients can now connect to the broadcast server to listen to the stream.
Adding Linux in our environment allowed us to re-use a lot of existing code for audio com-

pression and networking. However, as Linux is not real time, it cannot be used to guarantee a
fixed and precise sample rate.

3.1. Accessing HPS peripherals from Linux userland

The HPS includes a bridge to connect Avalon peripherals to the ARM processor’s bus. The
Avalon peripherals get remapped with an offset of 0x2ff00000, e.g. a peripheral whose Avalon
address is at 0x00004000 can be accessed by the ARM processor at 0x2ff04000. However, those
are physical addresses; whereas processes running with an operating system such as Linux can
only access virtual addresses. This mean one cannot access a peripheral by de-referencing a
pointer like it is commonly done on microcontrollers. This is done for security reasons, to make
sure one process cannot read or write memory belonging to another process. However, processes
running with superuser rights can do this by using the /dev/mem special file and the mmap system
call. Listing 1 shows an example in Python, which writes a pattern to LEDs present at Avalon
address 0x1000:

2

Listing 1: Sample Python program showing peripheral register access
from mmap import mmap
import s t r u c t

GPIO_ADDR = 0 xf f201000

Opens the f i l e in read wr i t e mode (b inary)
with open("/dev/mem" , " r+b") as f :

Creates a memory view at the GPIO address
mem = mmap(f . f i l e n o () , l ength=0x10 , o f f s e t=GPIO_ADDR)

wr i t e s 0xaa to the f i r s t r e g i s t e r (data) o f the GPIO
mem[0 x0 : 0 x4] = s t r u c t . pack (’ I ’ , 0xaa)

This approach has several advantages over writing a kernel module, especially in the develop-
ment phase. First, the code is running in userland, which means it can be debugged by usual
methods (stepping debuggers, console logging, etc.). Then, it can be written in an interpreted
language, such as Python, which removes the need for a cross compiler.
However, it also has some drawbacks. First, the code must run as root, which is a security

issue. Then, and perhaps most importantly, this approach does not allow IRQ handling. For
example, we use our mailbox in polling mode on the Linux side rather than having an interrupt
on message arrival. This makes the system less efficient.

4. Results

Audio recording from the NIOS is working. This means we can drive the ADC controller
periodically and store those samples in our buffers. We had to pre-process samples, as the
microphone had a DC bias. This was done using a first order high pass filter with a cutoff
frequency of 20Hz. Such a low cutoff frequency preserves most of the signal while quickly
suppressing the offset. We decided to do this processing on the NIOS directly, since it can be
implemented as a streaming process, using no additional buffers.
We also have a working communication with the Linux side. Every time a buffer is full, a

message is sent on the shared mailbox. A small Python program (Appendix B) periodically polls
the mailbox to see if any new sample arrived. If this is the case, those samples are recorded on
the SD card. Using this mechanism, we were able to confirm sound was properly recorded and
of reasonable quality (enough for spoken radio).
Unfortunately, the internet streaming solution is not finished yet. We were not able to con-

figure Icecast to properly integrate with our programs. When playing back one of our samples
recorded to disk, everything is working properly. However, when trying to connect the two
programs to do real time audio (using a pipe), it does not work anymore. We are not quite sure
of why this is happening, but our guess would be something related to buffering.

A. C program running on the NIOS

/∗
∗ NIOS App l i ca t i on acqu i r e audio and transmi t i t to another proces sor
∗ Created on : Jun 9 , 2017
∗ Authors :
∗ Antoine A l b e r t e l l i
∗ Atr i Bhattacharyya

3

∗/
#include " sys / a l t_s td i o . h"
#include "altera_avalon_mailbox_simple . h"
#include "altera_up_avalon_adc . h"
#include "altera_up_avalon_adc_regs . h"
#include " altera_avalon_timer . h"
#include " sys / a l t_ i rq . h"
#include " sys / alt_cache . h"
#include " . . / bsp/ system . h"

#define MULT_FACTOR 0

/∗ Comment to d i s a b l e f i l t e r i n g . ∗/
#define FILTER

#define CHANNEL 0
#define NUM_BUFS 40

#define TIMER_RESET (0 x1 << 0)
#define TIMER_START (0 x1 << 1)
#define TIMER_STOP (0 x1 << 2)
#define TIMER_INTEN (0 x1 << 3)
#define TIMER_INTDIS (0 x1 << 4)
#define TIMER_INTACK (0 x1 << 5)

/∗ F i l t e r parameters . ∗/
const f loat alpha_low = 0.99956 , alpha_high = 0 .68113 ;

alt_u32 sample_count=0;
volat i le alt_u32 which = 0 ;
alt_16 x_prev = 0 , y = 0 , z_prev = 0 , z = 0 , x ;

alt_up_adc_dev ∗adc ;
altera_avalon_mailbox_dev∗ mbox ;
alt_u32 data [2] = {0 xdeadbeef , 0 } ;
__attribute__ ((s e c t i o n (" . sdram"))) alt_16 bu f f e r [NUM_BUFS] [1 0 2 4] ;

void adc_timer_isr (void)
{

alt_u32 r e s u l t ;

IOWR(CUSTOM_TIMER_0_BASE, 1 , TIMER_INTACK) ;
// Faster ve r s i on o f alt_up_adc_read (adc , CHANNEL)

#ifde f FILTER
x = IORD(ADC_0_BASE, CHANNEL) ;
y = alpha_low ∗ y + alpha_low ∗ (x − x_prev) ;
x_prev = x ;

//Use z i f h igh pass f i l t e r i n g i s d e s i r ed
z = z_prev + alpha_high ∗ (y − z_prev) ;
z_prev = z ;

bu f f e r [which] [sample_count++] = y << MULT_FACTOR;
#else

bu f f e r [which] [sample_count++] = IORD(ADC_0_BASE, CHANNEL) << MULT_FACTOR;
#endif

/∗ I f we reached a f u l l b u f f e r , n o t i f y the HPS ∗/
i f (sample_count == 1024) {

4

alt_dcache_f lush_al l () ;
data [1] = bu f f e r [which] ;
r e s u l t = altera_avalon_mailbox_send (mbox , data , 2 , POLL) ;
sample_count = 0 ;
which = (which == NUM_BUFS − 1)? 0 : which+1;

}
}
#endif

void setup ()
{

//Setup t imer
IOWR(CUSTOM_TIMER_0_BASE, 1 , TIMER_RESET) ;
// In t e r rup t at 44.1 Khz
IOWR(CUSTOM_TIMER_0_BASE, 2 , 1134) ;

// Reg i s t e r i n t e r r u p t s
a l t_ i c_ i s r_r eg i s t e r (CUSTOM_TIMER_0_IRQ_INTERRUPT_CONTROLLER_ID,

CUSTOM_TIMER_0_IRQ,
adc_timer_isr , NULL, 0) ;

// Enable i n t e r r u p t
alt_ic_irq_enable (CUSTOM_TIMER_0_IRQ_INTERRUPT_CONTROLLER_ID,

CUSTOM_TIMER_0_IRQ) ;

//Setup mai lbox
mbox = altera_avalon_mailbox_open ("/dev/mb_nios_to_linux" , NULL, NULL) ;

//ADC setup
adc = alt_up_adc_open_dev ("/dev/adc_0") ;
alt_up_adc_auto_enable (adc) ;

// S ta r t t imer
IOWR(CUSTOM_TIMER_0_BASE, 1 , TIMER_START | TIMER_INTEN) ;

}

int main ()
{

setup () ;

/∗ The r e s t i s happening in ISR . ∗/
while (1) ;
return 0 ;

}

B. Python program running on Linux

Listing 2: This program reads audio samples coming from the NIOS and outputs them as raw
uncompressed audio (PCM) files.

#!/ usr / b in /env python2
"""
Reads audio data coming from the NIOS through the shared SDRAM.

Authors :
Antoine A l b e r t e l l i
Atr i Bhattacharyya
"""

5

from mmap import mmap
import time , s t r u c t
import sys

SDRAM_BASE = 0 xf f240000
SDRAM_SIZE = 0x40000

PERIPHERAL_BASE = 0 xf f201000
PERIPHERAL_SIZE = 0x30
LED_OFFSET = 0x0
MBR_OFFSET = 0x20

Maps SDRAM and p e r i p h e r a l s
f = open("/dev/mem" , " r+b") :
per = mmap(f . f i l e n o () , l ength=PERIPHERAL_SIZE, o f f s e t=PERIPHERAL_BASE)
ram = mmap(f . f i l e n o () , l ength=SDRAM_SIZE, o f f s e t=SDRAM_BASE)

def read_reg (mem, o f f s e t) :
return s t r u c t . unpack (’ I ’ , mem[o f f s e t : o f f s e t +4]) [0]

def read_shared_memory (address , l ength) :
return ram [address : address+length]

while True :
Waits f o r a message to a r r i v e on the mai lbox
while (read_reg (per , MBR_OFFSET + 0x08) & 0x01) == 0 :

pass

Reads the message , which conta ins the audio sample address
msg_addr = read_reg (per , MBR_OFFSET + 0x04)
command = read_reg (per , MBR_OFFSET + 0x0)

Reads the audio samples and ou tpu t s i t
data = read_shared_memory (msg_addr , 2048)
sys . s tdout . wr i t e (data)

6

	Project description
	Hardware design
	Software design
	Accessing HPS peripherals from Linux userland

	Results
	C program running on the NIOS
	Python program running on Linux

