
CS473 Embedded Systems – Lab 4
LCD & Camera mini project

Antoine Albertelli (205323, LCD)
Atri Bhattacharyya (269369, Camera)

This report presents the implementation of an embedded system acquiring
pictures on a TRDM-D5M camera module and send them to an LT24 LCD
module. The pictures are stored on the HPS external RAM. They are copied
from the camera and to the screen without CPU intervention using Direct
Memory Access (DMA) techniques.

Contents
Hardware architecture 2

Full system architecture . 2
Data format . 2

LT24 (LCD) subsystem . 3
Changes from initial design . 3

TRDM-D5M (Camera) subsystem . 3
Camera controller . 3
State machine . 5
Top level connections . 7
Timing diagrams . 7
Changes from initial design . 9

Programmer’s manual 9
LCD module . 9

Software API . 9
Register map . 10
Usage . 11

Camera module . 14
Software API . 14
Register map . 14
Usage . 15
Test setup . 15

1

Performance 16

Hardware architecture

Full system architecture

The full system (figure 1) contains a Nios processor (used to configure the peripherals
and start / stop transfers), our custom LCD screen controller and our custom camera
module controller. It also contains two memories: One small on chip RAM will hold
the code for the Nios and one bigger external RAM will be used to contain the pictures
transferred from camera to LCD. The external RAM will be used through the HPS DDR
controller.

Figure 1: System architecture. The Hard Processor System (HPS) is only used as a
gateway to the external RAM.

Data format

The display data are formated in the “R5G6B5” format: each pixel is made of 16 bits: 5
for red, 6 for green and 5 for blue. This is the native format for the LCD screen, meaning
less conversion has to be done.

Figure 2: Pixel format used through the system.

Each frame is treated as a 320row x 240column array of 2bytes each. The pixels are
stored row-majorwise. Hence, each frame requires 150KiB of memory.

2

LT24 (LCD) subsystem

The LCD controller architecture (figure 3) is made of several interconnected parts:

1. The LCD interface adapts the timing and signals coming from other parts of the
system to be compatible with the LCD interface.

2. The Avalon slave interface exposes some registers used to configure the system from
the NIOS2 processor. It can generate an interrupt on the end of frame if requested.

3. The Avalon master interface is used to fetch pixel data from the memory without
the use of the NIOS2 processor. It makes use of the burst read functionality to
increase throughput.

4. In order to use the burst read, a buffer must be placed between the LCD interface
and the master interface. This is handled by a FIFO memory generated using
Quartus’ MegaWizard. The “almost full” signal is used to tell the master interface
that there is not enough room to store a burst yet.

Changes from initial design

No significant hardware architecture changes were needed from initial design. The LCD’s
read enable pin is now driven instead of left open. This is required by the LCD but was
left out of the design document. The FIFO control signals are inverted between Quartus’
MegaWizard and my controller so this was changed as well.

TRDM-D5M (Camera) subsystem

The architecture for capturing frames from the camera consist of an I2C module for
setting and reading the registers in the TRDM camera. A PLL is used to provide
XCLKIN at a frequency of 25MHz. This is used by the camera for it’s internal clock and
ultimately for the PIXCLK signal that is sent to the camera controller. Finally, there
is the camera controller that is used for configuration of the DMA module, recieving
the frame from the camera and transferring that frame to memory. The internals of the
camera controller are discussed in the next section.

Camera controller

The camera controller has 3 main components:

• Avalon slave module
• Avalon master module
• Camera interface module

3

Figure 3: Architecture of the LCD controller

4

Figure 4: Camera subsystem architecture

Besides these, there are a couple of FIFO’s, an odd-row FIFO which is used by the camera
interface to store every alternate row and a FIFO between the master and interface
modules that run on different clocks.

The avalon master module writes 16-bit half-words to memory one at a time. This is to
accomodate the height-majorwise storage of the 2D pixel array in memory, and to enable
the LCD DMA module to burst-read from the RAM. This means that successive pixels
recieved from the camera are not adjacent in the memory.

State machine

The avalon master and slave modules have state machines as shown in the following
diagrams.

In the WAITING state, the slave module allows the buffer address to be set and interrupts
to be enabled or disabled. On receiving a write that triggers the camera, it transistions to
the CLICKING state and sends the Start Frame signal to the master. Here, it waits for
acknowledgement from the master that it has finished writing the frame to memory using
DMA. Depending on whether interrupts are enabled or disabled, it transisions to the
state INTERRUPT or WAITING respectively. In the INTERRUPT state, the interrupt
is asserted. This allows the processor to know the end of frame transfer. The processor
writes Reg0x10[1] = 1 to de-assert the interrupt. Then it goes back to the waiting state.

5

Figure 5: Camera controller architecture

Figure 6: Slave state machine

6

Figure 7: Master state machine

The Avalon master module starts in the IDLE state. Here, the interface module is held
in reset. On recieving the Start Frame signal from the slave module, it transistions to a
period where the camera is TRIGGERED. The camera interface is removed from reset
and the camera then transistions to a DATA WAIT state. In this state, it waits for
data coming from the camera interface module via the FIFO. When data is available,
it initiates a write on the Avalon bus and moves to ACK WAIT state. In this state, it
waits until the write is acknowleged using the wait_request signal. Then, depending
on whether all pixels have been written, it transistions back to the IDLE or the DATA
WAIT states.

Top level connections

Camera Controller Port FPGA Pin
PIXCLK GPIO_1_D5M_PIXCLK
DATA GPIO_1_D5M_D
XCLKIN pll_25mhz
RESETn GPIO_1_D5M_RESET_N
TRIGGER GPIO_1_D5M_TRIGGER
STROBE unused
LVAL GPIO_1_D5M_LVAL
FVAL GPIO_1_D5M_FVAL
SDATA GPIO_1_D5M_SDATA
SCLK GPIO_1_D5M_SCLK

Timing diagrams

The following are simulations showing specific signals at different stages of a click. The
clock is shown in yellow. Signals from the slave module are in indigo and those for the
master module are in green.

Figure 8: Triggering and associated state changes

7

Figure 9: Beginning of data acquisition and DMA

Figure 10: Signals at the end of a frame

8

Changes from initial design

The major changes from the design in Lab 3 to the final implementation are as follows:

• The startup procedure for the camera has been changed. This is mainly to overcome
incorrect configurations caused by ambiguities or misunderstanding of the TRDB
documentation. The PLL setup for the PIXCLK was abandoned as the camera
is ultimately running at a much lower frequency than the master module and the
FIFO internal to the camera is unnecessary.

• A FIFO stores the odd row pixels instead of an array of std_logic_vector after
discussion with the TA. An array of that size would not fit inside the FPGA A
FIFO, however, does fit and introduces a negligible amount of complexity to the
design of the camera interface.

• A Dual-clock FIFO was introduced between the interface and master modules. This
is necessary as the two modules run on unsynchronized clocks.

Programmer’s manual

LCD module

Software API

API function Description
void lcd_reset(void *lcd_base) Resets the LCD controller
void lcd_configure(void
*lcd_base)

Configures the LCD screen using the
sequence described below.

void lcd_enable(void *lcd_base) Turns on the screen.
void lcd_interrutp_enable(void
*lcd_base)

Enables the interrupt for the LCD screen.

void lcd_interrupt_disable(void
*lcd_base)

Disables the interrupt for the LCD screen.

void lcd_interrupt_clear(void
*lcd_base)

Resets the interrupt pending flag. Must be
called before returning from interrupt
handler.

void lcd_send_command(void
*lcd_base, uint16_t cmd)

Sends a command to the LCD.

void lcd_send_data(void
*lcd_base, uint16_t data)

Sends raw data to the LCD.

void lcd_send_frame(void
*lcd_base, void *frame)

Sends a frame via DMA to the LCD.

void lcd_dma_is_busy(void
*lcd_base)

Returns 1 if a DMA transfer is in progress,
0 otherwise.

9

Register map

Table 3: LCD controller register map. All offsets are in bytes as seen from an Avalon
Master.
Register Offset Description
FRAMEADR 0x00 32 bit base address of the display data.
CTRL 0x04 LCD interface control and status register.
LCDCMD 0x08 Raw data to be sent to the LCD as command.
LCDDATA 0x0C Raw data to be sent to the LCD as data.

FRAMEADR register

This register holds the LCD frame data base address. The address is stored as a 32 bit
Avalon byte address. When the DMASTART bit in the CTRL register is written, the LCD
controller will start reading from this address.

This register is can be read and write.

CTRL register

Table 4: LCD control register organization
Field Bit Description
LCDRESET 5 Controls the reset line for the LCD. Writing a

“1” here enables the reset.
LCDON 4 Controls wether the LCD is turned on or not.
DMABUSY 3 Indicates that a frame transfer is in progress.
DMASTART 2 Writings a “1” starts a DMA transfer to LCD.

It is always immediately reset to zero.
IE 1 End-of-frame interrupt enable.
IP 0 End-of-frame interrupt pending. Writing zero

clears interrupt flag.

LCDCMD register

This register is used to send raw commands to the LCD, e.g. during setup. Data written
to this register will be sent to the LCD and marked as a command. Only the 16 bits of
data are sent, the 16 most significant bits are ignored. This register is write only.

Note: Write to this register result in an Avalon wait state long enough for the LCD. This
means that no delay is required between consecutives write to the LCDCMD register.

10

LCDDATA register

This register is used to send raw data to the LCD after a write to LCDCMD. Data written
to this register will be sent to the LCD and marked as data. Only the 16 bits of data are
sent, the 16 most significant bits are ignored. This register is write only.

Note: Writes to this register result in an Avalon wait state long enough for the LCD.
This means that no delay is required between consecutives write to the LCDDATA register.

Usage

Before using the LCD interface in DMA mode, the LCD screen itself must be configured.
In order to do so an interface to send configuration data to the LCD is exposed via the
LCDCMD and LCDDATA registers. The LCD protocol made of commands followed by zero
or more data.

In order to prevent invalid LCD state, the screen must first be reset by writing a ‘1’ to
the LCDRESET bit of the CTRL register, waiting at least 100 ms then writing back a ‘0’.

Once all configuration data has been written (table 5), the screen can be enabled by
writing a ‘1’ to the LCDON bit of the CTRL register.

Before transmitting a frame, the data address must be written to the FRAMEADR register.
The transfer can then be started by writing a ‘1’ to the DMASTART bit in the CTRL
register.

If the IE bit of the CTRL register is set to ‘1’ an interrupt is generated once a frame has
been fully transmitted. The interrupt handler should write a ‘0’ to the IP bit of the CTRL
register in order to clear the interrupt flag. The interrupt handler can start the transfer
of a new frame by writing a ‘1’ to the DMASTART bit.

Table 5: LCD initialization sequence commands. See ILI9341 datasheet for details.
Command Data Description
0x0011 Leave sleep mode
0x00CF Power control B

0x0000
0x0081
0x00C0

0x00ED Power on control sequence
0x0064
0x0003
0x0012
0x0081

0x00E8 Driver timing control A
0x0001

11

Command Data Description
0x0798

0x00CB Power control A
0x0039
0x002C
0x0000
0x0034
0x0002

0x00F7 Pump ratio control
0x0020

0x00EA Driver timing control B
0x0000
0x0000

0x00B1 Frame control (normal
mode)

0x0000
0x001B

0x00B6 Display function control
0x000A
0x00A2

0x00C0 Power control 1
0x0005

0x00C1 Power control 2
0x0011

0x00C5 VCM control 1
0x0045
0x0045

0x00C7 VCM control 2
0x00A2

0x0036 Memory access control
0x0008 BGR order

0x00F2 Enable 3Gamma
0x0000 3Gamma disable

0x0026 Gamma set
0x0001

0x00E0 Gamma correction curve
(positive)

0x000F
0x0026
0x0024
0x000B
0x000E
0x0008

12

Command Data Description
0x004B
0x00A8
0x003B
0x000A
0x0014
0x0006
0x0010
0x0009
0x0000

0x00E1 Negative Gamma
Correction, Set Gamma

0x0000
0x001C
0x0020
0x0004
0x0010
0x0008
0x0034
0x0047
0x0044
0x0005
0x000B
0x0009
0x002F
0x0036
0x000F

0x002A Column Address Set
0x0000
0x0000
0x0000
0x00EF

0x002B Page Address Set
0x0000
0x0000
0x0001
0x003F

0x003A Pixel format
0x0055 R5G6B5

0x00F6 Interface Control
0x0001
0x0030
0x0000

13

Command Data Description
0x0029 display on

Camera module

Software API

API function Description
void camera_setup() Setup camera for normal operations
void click(void *address) Starts taking a picture, storing the result at

the provided address.
void setup_interrupt(void
(*f)(int))

Setup interrupts and enable them. f is a
function that is called when the interrupt
happens. f is called with the address of the
frame buffer as the argument.

void enable_interrupt() Enable interrupts.
void disable_interrupt() Disable interrupts.
void set_register(int
register_no, uint16_t value)

Set a camera register.

void test_setup() Setup the camera to output the test pattern.
void print_camera_setup() Print the camera registers for debuging.

Register map

Table 7: Register map for our camera controller. All offsets are in bytes, as seen from an
Avalon master.

Register Offset Description
BUFFADDR 0x0 Address of the frame buffer. Writes

are ignored when transfer is active
TRIGGER 0x04 Bit 0: Assert this bit to start a new

transfer if idle. Write ignored if
active. It is deasserted on completion
of frame transfer

CNTRL 0x08 Bit 0: Enable interrupts on
completion if set. Bit 1: Set on
interrupt. Clear to deassert
interrupt.

14

Usage

The provided setup function configures the internal registers of the camera using the
provided I2C IP core. Here is the startup procedure:

Startup procedure (using I2C commands):

1. Set the Reset register : Reg0x0D[0] = 1
2. Wait 1ms
3. Reset the Reset register: : Reg0x0D[0] = 0
4. Wait 1ms
5. Set register values as given below.
6. Delay 1ms
7. Set Reg0x1E = 0x4106 to use snapshit mode.
8. Delay 1ms

Table 8: Camera register values
Register Value Description
3 0x077F 1920 pixels, binned by 4, later subsampled by

2 = 240 pixels
4 0x09FF 2560 pixels, binned by 4, later subsampled by

2 = 320 pixels
9 0x077F Shutter width same as width
10 0x0001 Divide XCLKIN to get a PIXCLK of 12.5MHz.

Conceptually, other frequencies should not
affect the correct functioning of the controller.

34 0x0033 Set Row bin and Row skip to 3
35 0x0033 Set Column bin and skip to 3
160 0x0000 Disable the test pattern if active

Test setup

Setting the test pattern from the camera:

Register number Value Explaination
160 0x0039 Sets monochromatic vertical bars as test

pattern and activates testing
164 0x003F Set width of bars as divisor of frame width
161 0x. . . . Set arbitrary value for pixel values in even

bars
163 0x. . . . Set arbitrary value for pixel values in odd

bars

15

Performance

The whole setup was able to transfer images between camera and LCD at a rate of about
2 frames per second. We believe this is mostly limited by the camera exposure time,
as the DMA transfers are really fast. Therefore it should be possible to decrease the
exposure time and use the lower bits of each pixel instead of the higher ones to gain some
sensitivity. This could also improve color response, as our images were quite washed out.

Another performance issue with the current design is that LCD read bursts are extremely
long (120 32-bit words). This means that the Avalon slave serving the request (the
external RAM in our case) cannot be accessed for long period of time. If the memory
contains code for the CPU, IRQ will be delayed, which might not always be acceptable.

16

	Hardware architecture
	Full system architecture
	Data format

	LT24 (LCD) subsystem
	Changes from initial design

	TRDM-D5M (Camera) subsystem
	Camera controller
	State machine
	Top level connections
	Timing diagrams
	Changes from initial design

	Programmer's manual
	LCD module
	Software API
	Register map
	Usage

	Camera module
	Software API
	Register map
	Usage
	Test setup

	Performance

